

Sustainable Alternatives for Proteins from Agro-Industrial Residues and Byproducts

Our history

- Started in 1995 as spin-out of UGent
- Founder: Professor Willy Verstraete (Highly Cited Researcher since 2014)
- Management Buyout in 2021

Staff: 12 FTE

The challenge

- Climate change & global warming are environmental super challenges
- R&D turns complex and multi-faceted challenges into economic and environmental opportunities
- The bioeconomy will become a catalyst for systemic change
- Need for developing and scaling-up innovative bio-based and biodegradable solutions that are economically competitive
- A successful industrial deployment needs collaboration across the value chain

Our mission: Experts in Microbial Resource Management 2 business units

Environmental Remediation

Water Soil and groundwater Microbial corrosion

- → R&D&I
- → Feasibility studies and biodegradability testing
- → Microbial cultures
- → Nutrients (micro/macro)

Biomass Fermentation

PROMIC: SCP from residual side streams Power To Protein: SCP by gas fermentation

- → R&D&I
- → Microbial fermentation platforms

Biomass Fermentation An eco-friendly avenue to produce biobased ingredients

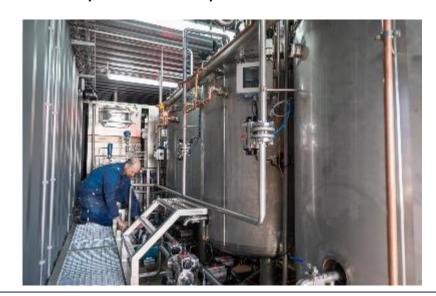
Edible microbial proteins

Animal feed ingredients

Biobased and biodegradable polymers

Circular biofertilizers

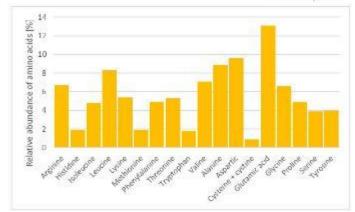
Biomass fermentation PROMIC | Single Cell Protein for animal feed

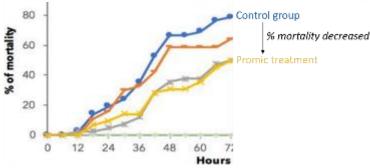


Upgrading undervalued industrial side streams and coproducts from the food processing industries

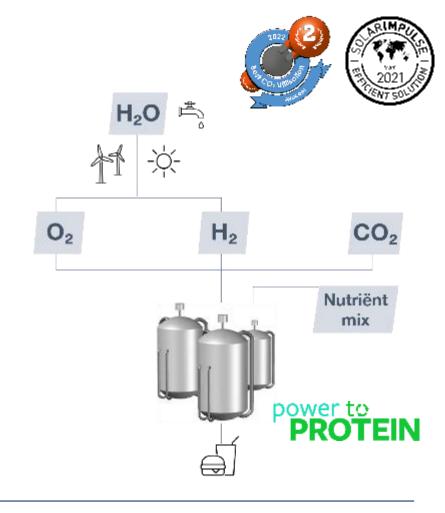
Conversion via Avecom's heterotrophic fermentation process into protein rich

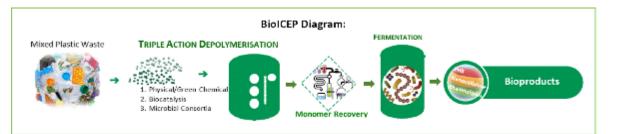
product (SCP)



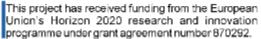


Biomass fermentation PROMIC | Single Cell Protein for animal feed


- Non GMO protein source
- 70% protein content
- Amino acid composition better than soy, approaches that of high-quality fishmeal
- Excellent digestibility, feed uptake and conversion (piglets, shrimps)
- Shrimps challenge test with pathogenic Vibrio: dose from 0 – 75% of diet with PROMIC:
 - Survival factor 2 better → Immunostimulating effect
 - Weight gain factor 1,5 better when PROMIC is fed


Biomass Fermentation Power To Protein

- Microbial gas fermentation platform
- By means of hydrogen gas oxidation, produced out of clean water
- Carbon capture using carbon dioxide
- Food ingredients rich in protein (70%), and presence of vitamin B12


Biomass Fermentation Biopolymers: EcoPlastiC & BioICEP

- Gradually release of its nutrients (slow-release organic fertilizer)
- Increases soil water retention
- Buffers the soil against acidity, alkalinity, salinity, pesticides and toxic heavy metals
- Cost-competitive alternative for other organic fertilizers
- Improves soil biodiversity and crop growth

Case study: RUSTICA Project

Rationale RUSTICA

Main relevant environmental problems identified in crop productions:

- Nutrient pollution in soils due to surplus application of N/ha and P/ha.
- Soil degradation.
- Food waste: 70 million tonnes of dry matter of field crop residues.

We need to:

Invest in recovery of nutrients from food waste.

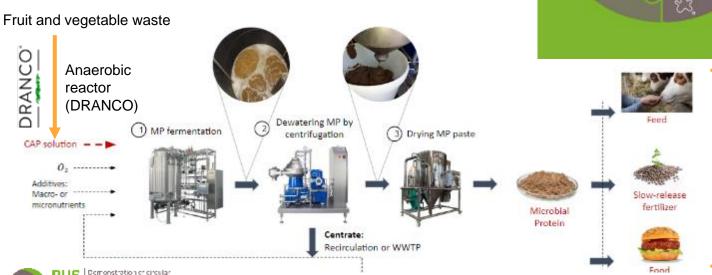
Replace mineral fertilizer with bio-based alternative.

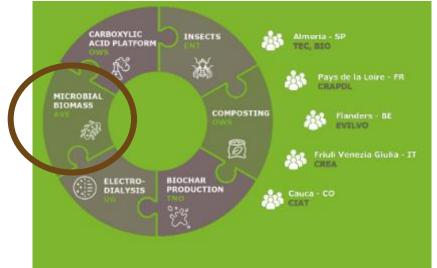
RUSTICA locations and consortium

Demonstration of circular bio-based fertilisers and implementation of optimized fertiliser strategies and value chains in rural communities

A technical solution to converting organic residues from the fruit and vegetable sector into novel bio-based fertiliser products.

What is RUSTICA project?


RUSTICA will:


- Foster the technical validation, demonstration and implementation of bio-based fertiliser and soil improvement production techniques.
- Focus on waste from the fruit and vegetable agro-food system.
- Close nutrient cycles on a regional level.
- Develop of economically viable and environmentally sustainable alternatives to mineral fertilisers with the same or improved agronomic value.

- Case study: RUSTICA Project
 - Bio based fertilizer: blend of different building blocks
 - Scale: 1000-2000 L reactor, continuous
 - Production of 115 kg microbial protein powder

Microbial protein production process (AVECOM)

- Case study: RUSTICA Project: Future perspective
 - Field trials in RUSTICA with RUSTICA blend (including Avecom's microbial protein)
 - Currently ongoing in Flanders2024: France and Italy

Preparing the field trial of Flanders

Scaling up

- Collaboration with DRANCO and Belgian vegetable and fruit processing company Currently: designing **full-scale** installation: converting **all** their waste into microbial protein: wet (DM = 10%) or dried (DM = 95%)
- 50.000-liter reactors, continuous operation Looking for interested companies/institutes for further research and utilization as sustainable organic fertilizer/biostimulant
 - sales@avecom.be
 - Michael.pil@avecom.be

Our competences

- Innovative R&D driven SME company
- Steering and optimizing microbial processes
- Proven track record in successfully developing and commercializing microbial solutions
- 9 patents (1 recently sold to industrial partner)
- 16 EU funded projects (~ 5 million €)
- Own labs and industrial pilot facilities
- Highly-skilled and diverse team

Industrieweg 122 P 9032 Wondelgem Belgium +32 9 375 17 14 sales@avecom.be <u>www.avecom.be</u> Michael.pil@avecom.be

